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Branching and annihilating Levy flights
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We consider a system of particles undergoing the branching and annihilating redctiofra+1)A and
A+A—, with m even. The particles move via long-rangevizdlights, where the probability of moving a
distancer decays as ~97“. We analyze this system diranching and annihilating Ley flightsusing field
theoretic renormalization group techniques close to the upper critical dimedsionr with ¢<2. These
results are then compared with Monte Carlo simulationd=nl. For ¢ close to unity ind=1, the critical
point for the transition from an absorbing to an active phase occurs at zero branching. Howewebjdger
than about 3/2 id= 1, the critical branching rate moves away from zero with increasingnd the transition
lies in a different universality class, inaccessible to controlled perturbative expansions. We measure the expo-
nents in both universality classes and examine their behavior as a function of
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[. INTRODUCTION whered is the spatial dimension of the system anik a free
parameter(the Levy index that controls the characteristic

Systems possessing a continuous nonequilibrium phasshape of the distribution. This distribution is asymptotically
transition from an active to an empty, absorbing state havéasr—«) equal to a Lgy distribution, and we will loosely
been intensively studied in the past few years. Despite theefer to it as such. It was first suggested that the critical
wide variety of processes that have been investigated, it hasxponents describing the LDP transition should vary con-
proved possible to classify the critical properties of theseinuously with o [14]. This expectation was backed up by
transitions into a small number of universality classes. Al-field theoretic renormalization group calculations in Ref.
though the well-known case of directed percolati@P) [15], and confirmed numerically in Reffl16,17]. Note that
[1-3] has turned out to be the most common universalityother numerical workg18,19 introduced an upper cutoff for
class, many investigations have examined systems with quitée flight distance. This resulted in an effectivghort-range
different critical properties. For instance, the model ofbehavior, meaning that the LDP regime was not properly
branching and annihilating random walkgith anevennum-  accessed. The results of REE9] also appear to be adversely
ber of offspring (BARW) defines a separate universality affected by strong finite-size effects.
class[3-6]. This reaction-diffusion system consists of ran-  The purpose of the present paper is to further investigate
dom walkers able to undergo the branching and annihilatinghe impact of Ley flights in models with nonequilibrium
reactionsA— (m+1)A andA+A—J, with m even. Other phase transitions. We will analyze in detail a model of
models in this clasgat least ind=1) include certain proba- branching and annihilating hey flightswith anevennumber
bilistic cellular automata[7], monomer-dimer models of offspring (BALF), a straightforward generalization of the
[8—10], nonequilibrium kinetic Ising modelgl1], and gen- BARW model, where the random walkers are replaced by
eralized DP with two absorbing statgs2]. These models particles performing ey flights. The BALF model pos-
escape from the DP universality class by possessing an extsgsses an upper critical dimensidp that varies continu-
conservation law or symmetry. The BARW model respectously with the Lery index o. Ford<d,, the model contains
an additional “parity” conservation of the total number of two new universality classes resulting from the long-range
particles modulo 2. On the other hand, branching and annirature of the Ley flights. The exponents in both of these
hilating random walks with an odd number of offspring pos-classes also vary continuously with We will investigate
sess no such parity conservation, and hence belong to the DRese new universality classes using field-theoretic methods,
universality clas$6]. For the other models mentioned above some exact results for the pure annihilation mdudiere the
[7-172], the DP class is escaped via an underlying symmetrypranching parameter is set equal to 2eend Monte Carlo
between the absorbing states. simulations ind=1.

Both the DP and BARW classes do, however, share one A further attractive feature of the BALF model is that it
important feature: the dynamical processes involved areasts some additional light on the properties of the ordinary
short ranged. One would expect that the addition of longshort-ranged BARW model. We will see that changing the
ranged processes would significantly alter the properties dfévy index fromo=1 to o=2 for the BALF model in fixed
the active/absorbing transitions. Recently this expectatioglimensiond=1 is in many ways similar to changing the
was confirmed by investigations of \e DP (LDP). This  physical dimension fromi=2 to d=1 in the short-ranged
modification, originally proposed by Mollisopl3] in the ~ BARW model. Although this correspondence is certainly not
context of epidemic spreading, is a generalization of DFrigorous, we can nevertheless use simulations of the BALF
where the distribution of spreading distanceis given by~ model in the physical dimensioti=1 to better understand

BARW model properties that lie in the inaccessible dimen-
P(r)~1k%*7, >0, (1)  sions betweem=1 andd=2. This will allow us to probe
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numerically some important features of the BARW field lows from the nonrecurrence of random walksdin 2. The

theory developed by Cardy and dtzer in Ref.[6]. correlation-length exponents can also be simply derived from
We now give a brief summary of the layout of the paper.gq. (6) yielding VY'F:UZ, ,,‘Mle_ Hence the dynamic

In the next section we briefly review the relevant propertieSsyponent z, defined by & ~ gﬁ’z, is given by zMF

of the short-ranged BARW model. In Sec. Il we then intro- _  mF; MF_ 5

duce the BALF model and present its mean-field behavior. ” - ' . . . )

L ! . Below the upper critical dimension the above mean-field

After these preliminaries, we present the field theoretic ac- : .

. . . . ) analysis breaks down due to the presence of fluctuations.

tion for BALF, which we analyze using diagrammatic and R | hods h b developed icallv i

renormalization group methods. These results are then Com_legenthy, mef': ods have ffeen Ie:\_/e opre] to systematically in-

pared with the Monte Carlo simulations in Sec. V. Finally, clude these fluctuation effects. First, the appropriate master

: . equation, which provides a complete description of the mi-
our conclusions appear in Sec. V. . . . .
croscopic dynamics of the system, is transformed into a
second-quantized Hamiltonian. This representation is then
mapped onto a coarse-grained field theoretic ad2d-22.

The BARW model is defined by the following reaction From this point the standard tools of renormalized perturba-

IIl. BRANCHING AND ANNIHILATING RANDOM WALKS

processes: tion expansions can be employed and the effects of fluctua-
tions systematically computed. For the case of BARW, this
A—(m+1)A, rate u,, (2)  analysis was performed in R¢6]. In the following we sum-
marize the main results of that analysis. The field theoretic
A+A—, rate \, 3 action for BARW, written in terms of the response field

where the identical particles otherwise perform simple ran- Y(x1) and the “density” fieldy(x.t), is given by[6]

dom walks with diffusion constarlD. As the reaction rate ~
parameters are varied, one finds a continuous phase transi- Sel #,; T]=f dx

fdt{t?f(x,t)[ﬁt—DVz]l//(x,t)
tion from a region controlled by the pure annihilation process 0

to an active region characterized by a nonzero particle den- _ 5 2 2
sity in the steady state. The growth of BARW clusters close ML=y O7JgxD
to the critical point can be summarized by a set of indepen- + sl 1= GG I D) (X, 1)}

dent exponents. A natural choice is to considerand v,

which describe the divergence of the correlation lengths in N
spaceg, ~|A|7":, and time & ~|A| ", close to criticality. — (X, 7) —Not(x,0)
Here the parametek describes the deviation from the criti-

cal point at the active/absorbing transition. We also need thelere the terms on the first line of E(Y) represent diffusion
order parameter exponegt which can be defined in twa  of the particlegwith continuum diffusion constarid). The
priori different ways: it is either governed by the probability second line describes the annihilation reacti@nith con-

. (7)

that a cluster grown from a finite seed never dies, tinuum rate\) while the terms on the third line represent the
5 branching proceséwith continuum rateu,,). The final two
P(t—o=,A)~Aseed  A>0 (4 terms represent, respectively, a contribution due to the pro-

jection state(see Ref[20]) and the initial condition(an un-
orrelated Poisson distribution with meag). In the follow-
ing we will restrict ourselves to the caseafen msince it is
N(A)~ABdens A>Q. (5) known that the oddn case belongs to the DP universality
class[6].
These exponents can be simply calculated in mean-field The action given in Eq(7) is abare action. In order to
theory, valid ford>d,=2. The appropriate mean-field rate Properly include fluctuation effects, one must be careful to

or by the coarse-grained density of active sites in the steal
state,

equation for the coarse-grained densif,t) is given by include processes generated by a combination of branching
and annihilation. In other words, in addition to the process
an=DV?n+mu,n—2\n2. (6) A—(m+1)A, the reactiond—(m—1)A, ... A—3A need

o to be included. These considerations lead to the full action
For u,=0 no branching is present, and we are reduced to

the well-known annihilation reactioA+A—J, which as- - q
ymptotically exhibits a power-law mean-field-density decaySL¥:#:71= | d°x
n~t~ 1. However, for nonzerqu,,, we have the homoge-
neous steady-state solutiog=mgu/2\. Hence the critical ~ ~
value of u,, clearly lies at zero, and we identify=mgu,,. + 2, pual 1= (X, 02 Th(X, 1) (X, 1)
The density thus behaves agxA, and we immediately see =t

ffdt’ Y[~ DV2Th(x,t)
0

m/2

that BT = 1. The alternative order-parameter exponglif A A

can also be simply calculated: fat>d.=2, the survival —A[l—t/f(x,t)z]l/f(x,t)z] — (X, 7) —Noh(X,0) |
probability (4) of a particle cluster will be finite foanyvalue

of the branching rate implying th@M~=0. This result fol- 8
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Notice also thatfor even mithe action(8) is invariant under It is also possible to analyze the BARW modelds- 1
the parity transformation using exact methods. In Rg6] it was demonstrated that at
the annihilation fixed point, the one-loop RG eigenva}gg
P ——d(x,1), Pt ——P(xt). (9) s actually exact ird=1. However, the reason for the can-

cellation of the contributions from higher loop orders in the
This symmetry corresponds physically to particle conservafield theory remains unclear. Other work&3,24], using
tion modulo 2. The presence of this extra symmetry nowduantum spin Hamiltonians, have indicated that the expo-
takes the system away from the DP universality class an8€ntsBgensandBsecqare exactly equal at the active/absorbing
into a new class: that of branching and annihilating randondransition ind=1. This conclusion is also supported by nu-

walks with an even number of offspring. merical simulationg25].

Simple power counting on the action in E®) reveals
that the upper critical dimension t=2. Close tod., the ). BRANCHING AND ANNIHILATING LE VY FLIGHTS
renormalization of the above action is quite straightforward ) ) . .
(here we again quote the results from Réf). At the anni- We now turn to the main object of this paper: a systematic

hilation fixed point the renormalizaion groufRG) eigen-  investigation of the BALF model. To begin with, we con-
value of the branching parameter can easily be computed. Tder the model at the mean field level. The appropriate mean
one-loop order, one findy, =2-m(m+1)e/2+0(e?),  field equation is given by

wheree=2—d. Hence we see that thewestbranching pro-
cess is actually the most relevant. Therefore, close to two
dimensions where the branching remains relevant, we expect

to find anactivestate for all nonzero values of the branching whereDN an_d D, are th_e rates for normal and 'ano_malous
(in agreement with the mean-field theory presented a)bove(LeVy) dlffu5|oq, respectively. The anqmalous d|ffu§|on op-
Furthermore, in this regime, we can exploit the fact that th ratorV? describes moves over long distances and is defined

critical point, which remains at zero branching, is describe y its action in momentum space
by the pure annihilation theory. Matching the exactly known
density decay21] and survival probability exponents in the
annihilation theory with their counterparts in the critical o ) )
BARW theory yields the exact exponent relatiofige,s Wherek=|k|. The standard diffusion ter\V* takes into
=dw}/2, Beeod= v|(2—d)/2, andz=2 [6]. To the best of our account the short-range component of thet distribution.
knowledge, the result foBe.eq although simple to derive, A more detailed de_nvatlon and Justlflcatlo_n for the we
has not previously been given in the literature. term can be found in Ref17]. The mean-field exponents
Inspection of the one-loop result for the most relevant RGE@n now easily be extracted. The critical 'a(F)mt remamns at
eigenvaluey,, shows that it eventually becomes negative.2€0 b'\;%nchmg anc:/iFfoo-<2, we identify Buens=1, Bseed
This occurs at a second critical dimensid, whered, 0¥ —1,andwi"=1/o. Note that foro=>2, these ex-
—4/3 to one-loop order. Fod<d!, we expect a major ponents cross over smootr;]ly to thef_ ?(;dlmarly mean-field
change in the behavior of the system since the branchin&é?%veif(p%?]ingf' \I/Ea\llr?ensactotnt?nz];?srl]_ Iv(\a/ith th:,I;;V ienoT:)? see
process will no longer be relevant at the annihilation fixed P L y

point. The critical transition point is then shifted with the The above mean-field description will only be quantita-

active state only being present for values of the branchinggively valid above the upper critical dimension d
. Fbed,,

greater than some positive critical value. For branching Pale must again take fluctuation effects into account. This can

rameter values smaller than this value, the branching will b%e done using the same methods as were used for the short-
asymptotically irrelevant. This region of parameter space 9

will thus be controlled by the annihilation fixed point of the fanged BARW mode[6]. We emphasize that the inclusion

: of the long-ranged Dey processes does not introduce any
A+A—(D process, where the density decays away as Barticular difficulties for the field theory mappirigee Ref.

power law. Hence this region of parameter space should ; T .
i R . . " "[17] for further detail$. Specializing immediately to the case
considered a critical inactivr absorbing phase. The pres with m=2 and definingu= 11, we find that the field theo-

ence of a second_c_r_ltlcal dlmensmj1~4/3 |mmed|a_tely retic action is given by
rules out any possibility of using perturbativeexpansions
to access the nontrivial active/absorbing transition expected

dn=(DyV?+DAV?)n+mu,n—2\n?, (10

Voeik-x:_koeik-x, (11)

in the physical dimension=1. Instead, cruder techniques Sy 7]

(such as the loop expansion in fixed dimengionust be ro

employed 6]. We will not discuss this part of the analysis of = j d’x J dt{gh(x,t)[ ,— DNV 2= DAV 7]eh(X,1)
Ref. [6] in much detail. However, we do wish to point out 0

that the truncated loop expansion at one loop does predict a
jump in the critical point at aroundl,~4/3, from zero
branching to some finite value. We will have more to say - A
about this observation in Sec. IV, after we have presented X (X, 1) (X, O} = (X, 7) = Noih(X,0) |-

our analytical and numerical study of the BALF model. (12

—N[1— (1) 2] (X, )2+ [ 1= (x,1)?]
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-\ -A a’

B/(/)EKEZ/((’—O'-F/) (18

(a)
with fixed points at"=0 and/'=/* = e=o—d. The result
(18) is actually exact to all orders in perturbation thefi2{].
For d> o, the Gaussian fixed point at=0 is stable while
for d< o, the nontrivialO(€) fixed point at/"'=/* is stable.

T8 A To investigate the relevance of the branching process, we

now calculate the one-loop RG eigenvalue for the branching

(b) process at the annihilation fixed point. Defining the dimen-
sionless renormalized branching rate as

s=Z,uk /Dy, (19

FIG. 1. One loop contribution t@a) the renormalized annihila- . . .
tion vertex andb) the renormalized branching vertex. then, from the diagram in Fig.(8), we can compute the
one-loop renormalization factor

This action describes both normal and anomalous diffusion.

The naive scaling dimensions of the fields are N Cyk™ €
2“21_3D_ Pt (20)
~ A
[(x,)]=x° [g(x,t)]= K" (13
Hence theZ function is
With [x]=«"! and[t]=«"?, we see that the naive scaling
dimensions of the couplings are J s
=xk—In—=-0+3/+0(/?). 21
[Dn]=x""2, [Dal=k% [N=k""% [p]=x". ST o 2

(4 Thus the one-loop RG eigenvalue for the branching process

Hence, power counting reveals that the upper critical dimenat the annihilation fixed point is
sion at which the fluctuations become important]js o for
o<2. Y=~ (/*)=0—3e=3d—20. (22

We have calculated the renormalization group flow func-
tions and eigenvalues so as to determine the long distand@onsequently, according to the one-loop theory, the branch-
and late-time behavior of this field theory. The one-loop con4ing process is relevant at the annihilation fixed point for
tribution to the renormalized annihilation vertex is given by
the diagram in Fig. @a). For the case where=0, the propa- o<o!(d)=3d/2 (23)
gator is 6+Dyk?+Dk?) "t in (k,s) space ¢ is the ¢
Laplace transformed time variablor e~ ®a*Pnt jn o, ind=1 for <o (d=1)=3/2. Hence, as in the mean-
(k,t) space. It turns out to be easiest to calculate arield case, we expect an active phase for all nonzero values
extended-time vertex function irk(t) space and then deter- of the branching ratg for sufficiently smallo (see also the
mine the renormalized coupling itk (S) space by perform- phase diagram in Sec. }VIn this regime, we can again
ing a Laplace transform and evaluating at the normalizatiorexploit the fact that criticality lies at zero branching and
point (k,s)=(0,2D 7). hence that the critical behavior of the BALF model coincides

The first step is to drop the normal diffusion term as it iswith that for the simple Ley annihilation modelA+A
less relevant forr<2. The dimensionless renormalized an- — & [17]. For the Lary annihilation model, several exact

nihilation coupling is defined by results can be derived: the density decays @&” (for d
<0<2)[17]; the survival probability decays a4 ! (also
/' =Z\\NCyk ™ “IDp (19  for d<o<2); and the dynamic exponent is just o (for
0<2). The second of these results follows in a simple way
with e=d.—d=0—d, and from the analysis of Ref26], but is nevertheless, to the best
of our knowledge, a new result. On the other hand, in the
_I'(d/o) T'(2—dlo) (16  BALF model itis straightforward to show that at criticality,

A7 Tr(dl2) 2971592 the density should decay &s”¢ns”l and the survival prob-

ability ast~Pseed”l, where again we have= o at the Lay

The one-loop renormalization factds, is then annihilation fixed poinf17]. Matching these results to the
B Lévy annihilation case, we hav@ene=dvj/o and Bseeq
7 :1_LCdK € (17) :V”(O'—d)/()'.
A Dy € ° Hence, in the regime<o/(d), there is just one indepen-
dent exponent that must be calculated perturbatively. Fol-
Hence theB function is given by lowing a similar analysis as in Rd6], this exponent can be
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taken to bev, , which in terms of the RG eigenvalue for the
branching is given by, =1/y,, . Ideally, at the annihilation
fixed point ind= 1, one would like to be able to calculate the
RG eigenvalugy,, exactly, as was done in the short-ranged
BARW model[6]. Remarkably in that case it was found that
the one-loop result was exact. Unfortunately, generalizing
the methods of Ref6] to the Levy case does not seem to be
straightforward. However, there is some numerical evidence
(to be presented in the next sectidn suggest that the one-
loop result fory,, in the Levy case is again exact.

We also note that, in the above regimerif 2< o, then
to one-loop order, we expect a smooth crossover to the short-4x1o’
ranged BARW model. Hence, at least at the one loop level,

[P—
= Lol

meemesnw——"yl
R

JE——

r s B Ea—
'S
1 %
faX
Oh
|
(=]
S
=

the model in this regime is more straightforward than the L AED RN r
LDP case, where there are additional complicati¢sse w{fjﬁ £
Refs.[15,17] for more details EEY 5
We now discuss the case where for>o/.(d), the Wl 3
branching becomes irrelevant at thevizeannihilation fixed e;«;é’f;éé
point. For this regime to be present at all, then from &8), e
we required<<4/3 to one-loop order. In this regime we ex- 1’?
pect the critical branching rate.(o,d) to become nonzero. i@
For 0<u<u.(o,d), the branching will be asymptotically xﬁ‘;ﬁ;
irrelevant, and this phase will again be governed by the ex- r‘}
ponents of the pure vy annihilation universality clagd 7]. ~200 200 200 0 200

At u=u(o,d) we then expect a nontrivial transition to an ] o ]
active phase. As was the case for the short-ranged BARW FIG. 2. Sample runs at various valueswfvith time evolution
model, we expect this transition to be inaccessible to connning up the page. All runs are for 500 time steps and are at
trolled perturbative expansions and in a different universality/24es Ofp about 10% away from the critical point into the active
class from that discussed above. This follows from the facp3S€- The top two frames shw0.9 ate=1.0 ando-=1.5, from

. .. - ~left to right. The lower left frame shows=1.9, p=0.77, and the
that this transition only appears below a second critical di . .
. , lower right frame shows the ordinary short-ranged BARW model at
mensiond<d/(o)=20/3 to one-loop order. Hence, as was

p=0.46. Notice the large change in scale between the first and last
the case for the short-ranged BARW modetd.—d ex-  fame.

pansions down from the upper critical dimensayy o will

not be able to access this transition. ) i o ] ]
We can now see the similarities between properties of th&€h00sing occupied sites is necessary since if the newly oc-

short-ranged BARW model as the dimension is loweredcUpied sites are chosen symmetrically about the original site,
from d=2 to d=1, and the BALF model id=1, as the then the short-ranged BARW model turns out to be in its

Lévy index is raised fromr=1 to o=2. In particular, to inactive state for all &cp=<1.

one-loop order, the region<do <o (d=1)=3/2 for thed The distribution of hop lengths was chosen to follow Eqg.

=1 BALF model contains the direct analog of the inacces\(1) for r=1. This distribution is implemented by choosing a
sible universality class present in BARW faf.~4/3<d random numbex from a uniform distribution on the interval
C

<2 [0,1) and then calculating a new random variabte (1
' —x) Y It is easy to see that this produces a sequence of
numbers whose distribution follows E(fL).

Two different initial conditions were used to calculate the
different exponents. In the first case, the initial condition was
a “seed” of two particles at lattice sites 1; see Fig. 2 for

In order to further investigate the BALF universality some sample runs with this initial condition, run for 500 time
class, we have performed extensive numerical simulations afteps. The long-range hops at smaltesult in a very rapid
a lattice BALF model ird=1. At each time step, a randomly and wide-ranging dispersal of the particles.
chosen particle was allowed either to branch with probability These simulations were averaged over many runs from
1—p or to move, via a long—range jump, with probabilily ~ the same initial condition but for different sequences of ran-
p was the only parameter in the simulations. The number oflom numbers. The number of ruri(t), surviving to timet,
particles at each lattice site was restricted to zero or onehe number of particles in the system averaged over the total
thus, when a particle moved to an occupied site, both pamumber of runsN(t), and a mean square spreading distance,
ticles were annihilated. At each branching step, a particldR?(t), were all measured. The mean spreading distance is
produced two offsprings, which occupied the two sites to thedefined by a geometric mean in théwecase(see Ref[17]
immediate left or right of the original particle with the side for more details At the critical point, these quantities should
chosen randomly. As pointed out in RE27], this method of  all follow power-law behavior with

IV. SIMULATION RESULTS
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1.34 T T T T TABLE I. The measured critical probabilities and exponents for
132 = various values ofr. The number in parentheses is an estimate of the
2/z 130 1) error in the last figure.
128 ff . Pe ) 9 z
1.26 1.525 0.99R) 0.321) —0.301) 1.532)
0 155  09924) 0322  -0302 1532
-026 1.6 0.9902) 0.332) -0.302) 1.562)
0 _o2s 1.65 0.9742) 0.322) -0.2612) 1.552)
- 1.7 0.95%2) 0.322) —0.242) 1.592)
e , , , , 1.8 0.9182) 0.322) -0.182) 1.592)
s 1.9 0.8632) 0.322) -0.141) 1.632)
2.0 0.8041) 0.3085) —0.0855) 1.682)
=t 25 0.61852)  0.28585)  —0.0085)  1.7Z1)
-3 _om o0 0.51042) 0.2813) 0.00%3) 1.741)
-0.34
-0.35 ' : : !
0.0 0.0002 0:0004 _, -0.0006 e 0.001 sured were also expected to behave as power laws on the

t (critical) inactive side of the transition. The differences be-

tween the equivalent exponents on the critical line and in the

; critical phase were sometimes small, particularly near
o=1.6. The exponents are plotted againgttd/extract thet— oo P P y

— ' (d= ; i i i
limit. The curves correspond to values jf from top to bottom, __Uc(d_ 1), where the_f'?‘e".' point we mvestlgated merges
0.985, 0.988, 0.99, and 0.992. with the pure Ley annihilation fixed point. Consequently

measurements close to this point required the longest runs.
Also, corrections to scaling meant that the effective local

FIG. 3. The effective local exponents, as in E{1)—(26), for

P(t)~t~° (24) exponents did, in fact, vary with The impact of these cor-
' rections to scaling was sometimes difficult to interpret accu-
N(t)~t°, (25) rately. Finally, the various exponents measured yielded
slightly different estimates fop, making it difficult to de-
R2(t)~t22, (26)  termine the critical point more accurately than done here.

This may be due to the corrections to scaling being of dif-
The critical point is determined by plotting a local exponentferent sizes for each of the exponents measured.
against 1/ and estimating the value @gf that produces a The results of these simulations are shown in Table I. The
straight line as 1/~0. For the survival probability, the local o= values shown are for simulations with normal diffu-

exponent is defined by sion where the exponents measured are consistent with those
of other simulationd5,27]. Figure 4 shows the phase dia-
n P(t) gram as determined by the simulations.
P(t/b) We now discuss some features of the numerical data in
—o) =y 27)  TableI.

The data presented in Table | are consistent with a value

and similarly for the other quantities. We have ugeds in  very close too=o¢(d=1)=3/2 for the emergence of the
our data analysis. The extrapolation of the exponent to 1/critical Levy annihilation phase at nonzero branching. This is
—0 is the estimate of its long time value. A sample analysidh good agreement with the one-loop result for in Eq.
for o=1.6 is shown in Fig. 3. (22), and provides some evidence that this one-loop result
We focus first on the perturbatively inaccessible transitionmay in fact be exact, as it was for the BARW model.
found for larger values of>o/(d=1). In this regime The measured exponents changed by rather small
we performed simulations at criticality and measured the examounts over the range of studied. As discussed in Sec.
ponents defined in Eq$24)—(26). To reduce finite size ef- I, the exponents ar=o (d=1), p=1 can be calculated
fects, we implemented periodic boundary conditions andor the pure Ley annihilation model and assuming.(d
used a very large lattice. Rather than store the occupatiors 1)=3/2, are given bys=—60=1/3, z=3/2. If the expo-
numbers of each lattice site, only the positions of the parnents are to change monotonically @gs varied, then they
ticles were stored. This meant that the system size was limare trapped in a relatively small range of values between the
ited only by the number of integers, i.e., a system size oBARW and Lery annihilation exponents.
254~1.8x 10'° on the 64-bit computer used. The simulations The numerical evidence is consistent with a smooth
ran for times between 210* and 2x<10° time steps per movement of the critical valup, away from unity aso is
particle, and were averaged over at least1Z’ runs. increased above 3/2, as shown in Fig. 4. Although a discon-
We encountered several obstacles in accurately determitinuous jump inp, at aroundo=3/2 cannot be completely
ing the values of these exponents. First, the quantities meauled out, any such jump would have to be smaller than
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Critical Annihilation Phases TABLE II. The exponeniBq.nsdetermined in simulations of the
1 . \\ ‘ steady-state density of a system of sizé.10
\
B\X\\ﬁ \ a Baens (Measurepl Baens (theory)
09 r i h: \ 7 .
Active Phase \ v 0.7 1.0 1(mean field
\\ 0.9 1.1 1(mean field
P osgt X ] 1.1 1.3 5/4(one loop
r ' \ 1.3 1.8 5/2(one loop
07 t N\ 1
s N \ also Ref.[17] for a similar casp Unfortunately, the values
06 L R \\ measured in the simulations deviate by around 5-25 % from
1 1.5 2 25 3 the mean field or one-loop expansion exponents calculated
o in Sec. lll. We believe there are two reasons for this discrep-

ancy. First, for smalbr, finite size effects become important,
FIG. 4. Phase diagram for the BALF modeld=1. The inset  as the long-ranged hops allow a single particle to wrap all the
shows a blowup of the region neaf(d=1). way around the system in a short time. Second,oas
— 0o (d=1)~3/2, Bgens becomes rather large, and hence

3 e large systems and long runs were necessary to probe the very
about 10 °. This finding has consequences for the analogoug 4| steady-state densities that occur ngarAlthough we

short-ranged BARW model. In that case the analog of th§ seq as large a system as practicable, we were not able to
point ato=o(d=1)~3/2 is the second critical dimension gngjrely eliminate the discrepancy between theory and simu-
found atd;~4/3. The uncontrolled truncated loop expansion|ations.

used to analyze this point in R¢6] predicted a discontinu- In summary, despite the difficulties encountered éor

ous jump of the critical point as dimensiahis lowered < ;’(d=1), the overall picture that emerges from the nu-
throughd( . Hence, the above numerical evidence indicatesnerics agrees well with the theory presented in the last sec-

that a smooth movement of the critical point is a more likelytion. As we have discussed earlier, this, in turn, provides
scenario. Given the uncontrolled nature of the truncated loopdditional support for the analysis of the short-ranged

expansion, any failure to accurately capture the behavioBARW model presented in Reff6].
close tod; would not, perhaps, be very surprising. Neverthe-
less, our results have provided numerical evidence for one of
the main conclusions of Ref6], namely the presence of a
second critical dimensiody, .

Despite considerable effort, the data reported in Table | In this paper we have presented an analytic and numerical
are unfortunately not precise enough to answer the questiostudy of the BALF model. Using field theoretic techniques,
at what value ofr do the Lavy results cross over to those of we have obtained a good analytic understanding of the model
the short-ranged BARW model? Regrettably, the situatiorin the physical dimension=1 for the regimeo less than
from a theoretical perspective is no clearer, due to the ababout 3/2. For values of larger than this, we have had to
sence of any controlled field theoretic methods in this rerely solely on numerical simulations. In both regimes the
gime. critical exponents of the active/absorbing transition are found

We now turn our attention to the second regime dor to vary continuously with the vy index o. Numerically,
=1 BALF, that forc<o/(d=1)~3/2. In this case, itis not we find that the transition between the two regimesdin
appropriate to perform simulations at criticality, since in that=1 occurs air=o/(d=1)~3/2, in agreement with the one
case we would only be measuring the exponents of the puri@op result from the field theory. Unfortunately our numerics
Levy annihilation model. Hence we have performed off- for the smallo regime were not good enough to confirm the
critical simulations in an effort to measu@g.nsas a function  accuracy of oure expansion calculations. Nevertheless, this
of o. In this case, we used a second initial condition, a fullyis the first time this universality class has been accessed since
occupied lattice of size =10’. We then allowed the number its equivalent in the original BARW model lies in the inac-
of particles to decay away until a steady state was reachedessible dimensiond,<d<?2.

The steady-state density depends on the deviation from the Finally, we would like to emphasize thaf W flights are
critical point, as described by E¢p), and thusByensmay be  a powerful way of probing the higher dimensional behavior
directly measured. of nonequilibrium models while performing simulations only

The values ofB4ensmeasured in these steady-state simu-in d=1. The disadvantage of this approach is that it neces-
lations are given in Table Il. Far<1 the mean field result sitates the use of extremely large system sizes if finite size
should hold sinced=1 then lies above the upper critical effects are to be avoided. However, we have shown that in
dimensiond.= . For o slightly bigger than unity, the upper large regions of parameter space these problems can be over-
critical dimension will lie just abovel=1 and hence one come and reasonable estimates obtained for the exponents.
might hope to directly observe theexpansion resultésee

V. CONCLUSIONS
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