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Branching and annihilating Lévy flights

Daniel Vernon and Martin Howard
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

~Received 28 November 2000; published 29 March 2001!

We consider a system of particles undergoing the branching and annihilating reactionsA→(m11)A and
A1A→B, with m even. The particles move via long-range Le´vy flights, where the probability of moving a
distancer decays asr 2d2s. We analyze this system ofbranching and annihilating Le´vy flightsusing field
theoretic renormalization group techniques close to the upper critical dimensiondc5s with s,2. These
results are then compared with Monte Carlo simulations ind51. For s close to unity ind51, the critical
point for the transition from an absorbing to an active phase occurs at zero branching. However, fors bigger
than about 3/2 ind51, the critical branching rate moves away from zero with increasings, and the transition
lies in a different universality class, inaccessible to controlled perturbative expansions. We measure the expo-
nents in both universality classes and examine their behavior as a function ofs.
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I. INTRODUCTION

Systems possessing a continuous nonequilibrium ph
transition from an active to an empty, absorbing state h
been intensively studied in the past few years. Despite
wide variety of processes that have been investigated, it
proved possible to classify the critical properties of the
transitions into a small number of universality classes.
though the well-known case of directed percolation~DP!
@1–3# has turned out to be the most common universa
class, many investigations have examined systems with q
different critical properties. For instance, the model
branching and annihilating random walkswith anevennum-
ber of offspring ~BARW! defines a separate universali
class@3–6#. This reaction-diffusion system consists of ra
dom walkers able to undergo the branching and annihila
reactionsA→(m11)A andA1A→B, with m even. Other
models in this class~at least ind51) include certain proba
bilistic cellular automata @7#, monomer-dimer models
@8–10#, nonequilibrium kinetic Ising models@11#, and gen-
eralized DP with two absorbing states@12#. These models
escape from the DP universality class by possessing an e
conservation law or symmetry. The BARW model respe
an additional ‘‘parity’’ conservation of the total number o
particles modulo 2. On the other hand, branching and a
hilating random walks with an odd number of offspring po
sess no such parity conservation, and hence belong to th
universality class@6#. For the other models mentioned abo
@7–12#, the DP class is escaped via an underlying symme
between the absorbing states.

Both the DP and BARW classes do, however, share
important feature: the dynamical processes involved
short ranged. One would expect that the addition of lo
ranged processes would significantly alter the propertie
the active/absorbing transitions. Recently this expecta
was confirmed by investigations of Le´vy DP ~LDP!. This
modification, originally proposed by Mollison@13# in the
context of epidemic spreading, is a generalization of
where the distribution of spreading distancesr is given by

P~r !;1/r d1s, s.0, ~1!
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whered is the spatial dimension of the system ands is a free
parameter~the Lévy index! that controls the characteristi
shape of the distribution. This distribution is asymptotica
~as r→`) equal to a Le´vy distribution, and we will loosely
refer to it as such. It was first suggested that the criti
exponents describing the LDP transition should vary c
tinuously with s @14#. This expectation was backed up b
field theoretic renormalization group calculations in R
@15#, and confirmed numerically in Refs.@16,17#. Note that
other numerical works@18,19# introduced an upper cutoff fo
the flight distancer. This resulted in an effectiveshort-range
behavior, meaning that the LDP regime was not prope
accessed. The results of Ref.@19# also appear to be adverse
affected by strong finite-size effects.

The purpose of the present paper is to further investig
the impact of Le´vy flights in models with nonequilibrium
phase transitions. We will analyze in detail a model
branching and annihilating Le´vy flightswith anevennumber
of offspring ~BALF!, a straightforward generalization of th
BARW model, where the random walkers are replaced
particles performing Le´vy flights. The BALF model pos-
sesses an upper critical dimensiondc that varies continu-
ously with the Lévy indexs. For d,dc , the model contains
two new universality classes resulting from the long-ran
nature of the Le´vy flights. The exponents in both of thes
classes also vary continuously withs. We will investigate
these new universality classes using field-theoretic meth
some exact results for the pure annihilation model~where the
branching parameter is set equal to zero!, and Monte Carlo
simulations ind51.

A further attractive feature of the BALF model is that
casts some additional light on the properties of the ordin
short-ranged BARW model. We will see that changing t
Lévy index froms51 to s52 for the BALF model in fixed
dimensiond51 is in many ways similar to changing th
physical dimension fromd52 to d51 in the short-ranged
BARW model. Although this correspondence is certainly n
rigorous, we can nevertheless use simulations of the BA
model in the physical dimensiond51 to better understand
BARW model properties that lie in the inaccessible dime
sions betweend51 andd52. This will allow us to probe
©2001 The American Physical Society16-1
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numerically some important features of the BARW fie
theory developed by Cardy and Ta¨uber in Ref.@6#.

We now give a brief summary of the layout of the pap
In the next section we briefly review the relevant propert
of the short-ranged BARW model. In Sec. III we then intr
duce the BALF model and present its mean-field behav
After these preliminaries, we present the field theoretic
tion for BALF, which we analyze using diagrammatic an
renormalization group methods. These results are then c
pared with the Monte Carlo simulations in Sec. IV. Final
our conclusions appear in Sec. V.

II. BRANCHING AND ANNIHILATING RANDOM WALKS

The BARW model is defined by the following reactio
processes:

A→~m11!A, rate mm , ~2!

A1A→B, rate l, ~3!

where the identical particlesA otherwise perform simple ran
dom walks with diffusion constantD. As the reaction rate
parameters are varied, one finds a continuous phase tr
tion from a region controlled by the pure annihilation proce
to an active region characterized by a nonzero particle d
sity in the steady state. The growth of BARW clusters clo
to the critical point can be summarized by a set of indep
dent exponents. A natural choice is to considern' and n i ,
which describe the divergence of the correlation lengths
space,j';uDu2n', and time,j i;uDu2n i, close to criticality.
Here the parameterD describes the deviation from the crit
cal point at the active/absorbing transition. We also need
order parameter exponentb, which can be defined in twoa
priori different ways: it is either governed by the probabili
that a cluster grown from a finite seed never dies,

P~ t→`,D!;Dbseed, D.0 ~4!

or by the coarse-grained density of active sites in the ste
state,

n~D!;Dbdens D.0. ~5!

These exponents can be simply calculated in mean-fi
theory, valid ford.dc52. The appropriate mean-field ra
equation for the coarse-grained densityn(x,t) is given by

] tn5D¹2n1mmmn22ln2. ~6!

For mm50 no branching is present, and we are reduced
the well-known annihilation reactionA1A→B, which as-
ymptotically exhibits a power-law mean-field-density dec
n;t21. However, for nonzeromm , we have the homoge
neous steady-state solutionns5mmm/2l. Hence the critical
value ofmm clearly lies at zero, and we identifyD5mmm .
The density thus behaves asns}D, and we immediately see
thatbdens

MF 51. The alternative order-parameter exponentbseed
MF

can also be simply calculated: ford.dc52, the survival
probability~4! of a particle cluster will be finite foranyvalue
of the branching rate implying thatbseed

MF 50. This result fol-
04111
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lows from the nonrecurrence of random walks ind.2. The
correlation-length exponents can also be simply derived fr
Eq. ~6! yielding n'

MF51/2, n i
MF51. Hence the dynamic

exponent z, defined by j';j i
1/z , is given by zMF

5n i
MF/n'

MF52.
Below the upper critical dimension the above mean-fi

analysis breaks down due to the presence of fluctuatio
Recently, methods have been developed to systematicall
clude these fluctuation effects. First, the appropriate ma
equation, which provides a complete description of the m
croscopic dynamics of the system, is transformed into
second-quantized Hamiltonian. This representation is t
mapped onto a coarse-grained field theoretic action@20–22#.
From this point the standard tools of renormalized pertur
tion expansions can be employed and the effects of fluc
tions systematically computed. For the case of BARW, t
analysis was performed in Ref.@6#. In the following we sum-
marize the main results of that analysis. The field theore
action for BARW, written in terms of the response fie
ĉ(x,t) and the ‘‘density’’ fieldc(x,t), is given by@6#

S0@c,ĉ;t#5E ddxF E
0

t

dt$ĉ~x,t !@] t2D“

2#c~x,t !

2l@12ĉ~x,t !2#c~x,t !2

1mm@12ĉ~x,t !m#ĉ~x,t !c~x,t !%

2c~x,t!2n0ĉ~x,0!G . ~7!

Here the terms on the first line of Eq.~7! represent diffusion
of the particles~with continuum diffusion constantD). The
second line describes the annihilation reaction~with con-
tinuum ratel) while the terms on the third line represent th
branching process~with continuum ratemm). The final two
terms represent, respectively, a contribution due to the p
jection state~see Ref.@20#! and the initial condition~an un-
correlated Poisson distribution with meann0). In the follow-
ing we will restrict ourselves to the case ofeven m, since it is
known that the oddm case belongs to the DP universali
class@6#.

The action given in Eq.~7! is a bare action. In order to
properly include fluctuation effects, one must be careful
include processes generated by a combination of branc
and annihilation. In other words, in addition to the proce
A→(m11)A, the reactionsA→(m21)A, . . . ,A→3A need
to be included. These considerations lead to the full actio

S@c,ĉ;t#5E ddxF E
0

t

dtH ĉ~x,t !@] t2D“

2#c~x,t !

1(
l 51

m/2

m2l@12ĉ~x,t !2l #ĉ~x,t !c~x,t !

2l@12ĉ~x,t !2#c~x,t !2J 2c~x,t!2n0ĉ~x,0!G .

~8!
6-2
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Notice also that~for even m! the action~8! is invariant under
the parity transformation

ĉ~x,t !→2ĉ~x,t !, c~x,t !→2c~x,t !. ~9!

This symmetry corresponds physically to particle conser
tion modulo 2. The presence of this extra symmetry n
takes the system away from the DP universality class
into a new class: that of branching and annihilating rand
walks with an even number of offspring.

Simple power counting on the action in Eq.~8! reveals
that the upper critical dimension isdc52. Close todc , the
renormalization of the above action is quite straightforwa
~here we again quote the results from Ref.@6#!. At the anni-
hilation fixed point the renormalizaion group~RG! eigen-
value of the branching parameter can easily be computed
one-loop order, one findsymm

522m(m11)e/21O(e2),

wheree522d. Hence we see that thelowestbranching pro-
cess is actually the most relevant. Therefore, close to
dimensions where the branching remains relevant, we ex
to find anactivestate for all nonzero values of the branchi
~in agreement with the mean-field theory presented abo!.
Furthermore, in this regime, we can exploit the fact that
critical point, which remains at zero branching, is describ
by the pure annihilation theory. Matching the exactly know
density decay@21# and survival probability exponents in th
annihilation theory with their counterparts in the critic
BARW theory yields the exact exponent relationsbdens
5dn i/2, bseed5n i(22d)/2, andz52 @6#. To the best of our
knowledge, the result forbseed, although simple to derive
has not previously been given in the literature.

Inspection of the one-loop result for the most relevant R
eigenvalueym2

shows that it eventually becomes negativ

This occurs at a second critical dimensiondc8 , where dc8
54/3 to one-loop order. Ford,dc8 , we expect a major
change in the behavior of the system since the branch
process will no longer be relevant at the annihilation fix
point. The critical transition point is then shifted with th
active state only being present for values of the branch
greater than some positive critical value. For branching
rameter values smaller than this value, the branching wil
asymptotically irrelevant. This region of parameter spa
will thus be controlled by the annihilation fixed point of th
A1A→B process, where the density decays away a
power law. Hence this region of parameter space should
considered a critical inactive~or absorbing! phase. The pres
ence of a second critical dimensiondc8'4/3 immediately
rules out any possibility of using perturbativee expansions
to access the nontrivial active/absorbing transition expec
in the physical dimensiond51. Instead, cruder technique
~such as the loop expansion in fixed dimension! must be
employed@6#. We will not discuss this part of the analysis
Ref. @6# in much detail. However, we do wish to point o
that the truncated loop expansion at one loop does pred
jump in the critical point at arounddc8'4/3, from zero
branching to some finite value. We will have more to s
about this observation in Sec. IV, after we have presen
our analytical and numerical study of the BALF model.
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It is also possible to analyze the BARW model ind51
using exact methods. In Ref.@6# it was demonstrated that a
the annihilation fixed point, the one-loop RG eigenvalueym2

is actually exact ind51. However, the reason for the can
cellation of the contributions from higher loop orders in t
field theory remains unclear. Other works@23,24#, using
quantum spin Hamiltonians, have indicated that the ex
nentsbdensandbseedare exactly equal at the active/absorbi
transition ind51. This conclusion is also supported by n
merical simulations@25#.

III. BRANCHING AND ANNIHILATING LE ´ VY FLIGHTS

We now turn to the main object of this paper: a systema
investigation of the BALF model. To begin with, we con
sider the model at the mean field level. The appropriate m
field equation is given by

] tn5~DN¹21DA¹s!n1mmmn22ln2, ~10!

whereDN and DA are the rates for normal and anomalo
~Lévy! diffusion, respectively. The anomalous diffusion o
erator¹s describes moves over long distances and is defi
by its action in momentum space

¹seik•x52kseik•x, ~11!

wherek5uku. The standard diffusion termDN¹2 takes into
account the short-range component of the Le´vy distribution.
A more detailed derivation and justification for the Le´vy
term can be found in Ref.@17#. The mean-field exponent
can now easily be extracted. The critical point remains
zero branching and, fors,2, we identify bdens

MF 51, bseed
MF

50, n i
MF51, and,n'

MF51/s. Note that fors.2, these ex-
ponents cross over smoothly to the ordinary mean-fi
BARW exponents. Even at the mean-field level, we can
that the exponentn' varies continuously with the Le´vy index
s.

The above mean-field description will only be quantit
tively valid above the upper critical dimension. Ford<dc ,
we must again take fluctuation effects into account. This
be done using the same methods as were used for the s
ranged BARW model@6#. We emphasize that the inclusio
of the long-ranged Le´vy processes does not introduce a
particular difficulties for the field theory mapping~see Ref.
@17# for further details!. Specializing immediately to the cas
with m52 and definingm[m2, we find that the field theo-
retic action is given by

S@c,ĉ;t#

5E ddxF E
0

t

dt$ĉ~x,t !@] t2DN“
22DA“

s#c~x,t !

2l@12ĉ~x,t !2#c~x,t !21m@12ĉ~x,t !2#

3ĉ~x,t !c~x,t !%2c~x,t!2n0ĉ~x,0!G .
~12!
6-3
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DANIEL VERNON AND MARTIN HOWARD PHYSICAL REVIEW E 63 041116
This action describes both normal and anomalous diffus
The naive scaling dimensions of the fields are

@ĉ~x,t !#5k0, @c~x,t !#5kd. ~13!

With @x#5k21 and@ t#5k2s, we see that the naive scalin
dimensions of the couplings are

@DN#5ks22, @DA#5k0, @l#5ks2d, @m#5ks.
~14!

Hence, power counting reveals that the upper critical dim
sion at which the fluctuations become important, isdc5s for
s,2.

We have calculated the renormalization group flow fun
tions and eigenvalues so as to determine the long dista
and late-time behavior of this field theory. The one-loop co
tribution to the renormalized annihilation vertex is given
the diagram in Fig. 1~a!. For the case wherem50, the propa-
gator is (s1DNk21DAks)21 in (k,s) space (s is the
Laplace transformed time variable! or e2(DAks1DNk2)t in
(k,t) space. It turns out to be easiest to calculate
extended-time vertex function in (k,t) space and then dete
mine the renormalized coupling in (k,s) space by perform-
ing a Laplace transform and evaluating at the normaliza
point (k,s)5(0,2DAks).

The first step is to drop the normal diffusion term as it
less relevant fors,2. The dimensionless renormalized a
nihilation coupling is defined by

l 5ZllCdk2e/DA ~15!

with e5dc2d5s2d, and

Cd5
G~d/s!

G~d/2!

G~22d/s!

2d21pd/2 . ~16!

The one-loop renormalization factorZl is then

Zl512
l

DA

Cdk2e

e
. ~17!

Hence theb function is given by

FIG. 1. One loop contribution to~a! the renormalized annihila
tion vertex and~b! the renormalized branching vertex.
04111
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b l ~ l ![k
]l

]k
5l ~d2s1l ! ~18!

with fixed points atl 50 andl 5l * 5e5s2d. The result
~18! is actually exact to all orders in perturbation theory@21#.
For d.s, the Gaussian fixed point atl 50 is stable while
for d,s, the nontrivialO(e) fixed point atl 5l * is stable.

To investigate the relevance of the branching process,
now calculate the one-loop RG eigenvalue for the branch
process at the annihilation fixed point. Defining the dime
sionless renormalized branching rate as

s5Zmmk2s/DA , ~19!

then, from the diagram in Fig. 1~b!, we can compute the
one-loop renormalization factor

Zm5123
l

DA

Cdk2e

e
. ~20!

Hence thez function is

zm[k
]

]k
ln

s

m
52s13l 1O~ l 2!. ~21!

Thus the one-loop RG eigenvalue for the branching proc
at the annihilation fixed point is

ym52zm~ l * !5s23e53d22s. ~22!

Consequently, according to the one-loop theory, the bran
ing process is relevant at the annihilation fixed point for

s,sc8~d!53d/2 ~23!

or, in d51 for s,sc8(d51)53/2. Hence, as in the mean
field case, we expect an active phase for all nonzero va
of the branching ratem for sufficiently smalls ~see also the
phase diagram in Sec. IV!. In this regime, we can again
exploit the fact that criticality lies at zero branching an
hence that the critical behavior of the BALF model coincid
with that for the simple Le´vy annihilation modelA1A
→B @17#. For the Lévy annihilation model, several exac
results can be derived: the density decays ast2d/s ~for d
,s,2) @17#; the survival probability decays astd/s21 ~also
for d,s,2); and the dynamic exponent is justz5s ~for
s,2). The second of these results follows in a simple w
from the analysis of Ref.@26#, but is nevertheless, to the be
of our knowledge, a new result. On the other hand, in
BALF model it is straightforward to show that at criticality
the density should decay ast2bdens/n i and the survival prob-
ability as t2bseed/n i, where again we havez5s at the Lévy
annihilation fixed point@17#. Matching these results to th
Lévy annihilation case, we havebdens5dn i /s and bseed
5n i(s2d)/s.

Hence, in the regimes,sc8(d), there is just one indepen
dent exponent that must be calculated perturbatively. F
lowing a similar analysis as in Ref.@6#, this exponent can be
6-4
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BRANCHING AND ANNIHILATING LÉ VY FLIGHTS PHYSICAL REVIEW E 63 041116
taken to ben' , which in terms of the RG eigenvalue for th
branching is given byn'51/ym . Ideally, at the annihilation
fixed point ind51, one would like to be able to calculate th
RG eigenvalueym exactly, as was done in the short-rang
BARW model@6#. Remarkably in that case it was found th
the one-loop result was exact. Unfortunately, generaliz
the methods of Ref.@6# to the Lévy case does not seem to b
straightforward. However, there is some numerical evide
~to be presented in the next section! to suggest that the one
loop result forym in the Lévy case is again exact.

We also note that, in the above regime ifs52,sc8 , then
to one-loop order, we expect a smooth crossover to the sh
ranged BARW model. Hence, at least at the one loop le
the model in this regime is more straightforward than
LDP case, where there are additional complications~see
Refs.@15,17# for more details!.

We now discuss the case where fors.sc8(d), the
branching becomes irrelevant at the Le´vy annihilation fixed
point. For this regime to be present at all, then from Eq.~23!,
we required,4/3 to one-loop order. In this regime we e
pect the critical branching ratemc(s,d) to become nonzero
For 0,m,mc(s,d), the branching will be asymptotically
irrelevant, and this phase will again be governed by the
ponents of the pure Le´vy annihilation universality class@17#.
At m5mc(s,d) we then expect a nontrivial transition to a
active phase. As was the case for the short-ranged BA
model, we expect this transition to be inaccessible to c
trolled perturbative expansions and in a different universa
class from that discussed above. This follows from the f
that this transition only appears below a second critical
mensiond,dc8(s)52s/3 to one-loop order. Hence, as wa
the case for the short-ranged BARW model,e5dc2d ex-
pansions down from the upper critical dimensiondc5s will
not be able to access this transition.

We can now see the similarities between properties of
short-ranged BARW model as the dimension is lowe
from d52 to d51, and the BALF model ind51, as the
Lévy index is raised froms51 to s52. In particular, to
one-loop order, the region 1,s,sc8(d51)53/2 for thed
51 BALF model contains the direct analog of the inacc
sible universality class present in BARW fordc8'4/3,d
,2.

IV. SIMULATION RESULTS

In order to further investigate the BALF universali
class, we have performed extensive numerical simulation
a lattice BALF model ind51. At each time step, a randoml
chosen particle was allowed either to branch with probabi
12p or to move, via a long–range jump, with probabilityp;
p was the only parameter in the simulations. The numbe
particles at each lattice site was restricted to zero or o
thus, when a particle moved to an occupied site, both p
ticles were annihilated. At each branching step, a part
produced two offsprings, which occupied the two sites to
immediate left or right of the original particle with the sid
chosen randomly. As pointed out in Ref.@27#, this method of
04111
g

e

rt-
l,

e

x-

W
-

y
t

i-

e
d

-

of

y

f
e:
r-
le
e

choosing occupied sites is necessary since if the newly
cupied sites are chosen symmetrically about the original s
then the short-ranged BARW model turns out to be in
inactive state for all 0,p<1.

The distribution of hop lengths was chosen to follow E
~1! for r>1. This distribution is implemented by choosing
random numberx from a uniform distribution on the interva
@0,1) and then calculating a new random variabler 5(1
2x)21/s. It is easy to see that this produces a sequence
numbers whose distribution follows Eq.~1!.

Two different initial conditions were used to calculate t
different exponents. In the first case, the initial condition w
a ‘‘seed’’ of two particles at lattice sites61; see Fig. 2 for
some sample runs with this initial condition, run for 500 tim
steps. The long-range hops at smalls result in a very rapid
and wide-ranging dispersal of the particles.

These simulations were averaged over many runs fr
the same initial condition but for different sequences of ra
dom numbers. The number of runs,P(t), surviving to timet,
the number of particles in the system averaged over the t
number of runs,N(t), and a mean square spreading distan
R2(t), were all measured. The mean spreading distanc
defined by a geometric mean in the Le´vy case~see Ref.@17#
for more details!. At the critical point, these quantities shou
all follow power-law behavior with

FIG. 2. Sample runs at various values ofs with time evolution
running up the page. All runs are for 500 time steps and are
values ofp about 10% away from the critical point into the activ
phase. The top two frames showp50.9 ats51.0 ands51.5, from
left to right. The lower left frame showss51.9, p50.77, and the
lower right frame shows the ordinary short-ranged BARW mode
p50.46. Notice the large change in scale between the first and
frame.
6-5
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DANIEL VERNON AND MARTIN HOWARD PHYSICAL REVIEW E 63 041116
P~ t !;t2d, ~24!

N~ t !;tu, ~25!

R2~ t !;t2/z. ~26!

The critical point is determined by plotting a local expone
against 1/t and estimating the value ofp that produces a
straight line as 1/t→0. For the survival probability, the loca
exponent is defined by

2d~ t !5

ln
P~ t !

P~ t/b!

ln b
, ~27!

and similarly for the other quantities. We have usedb55 in
our data analysis. The extrapolation of the exponent tot
→0 is the estimate of its long time value. A sample analy
for s51.6 is shown in Fig. 3.

We focus first on the perturbatively inaccessible transit
found for larger values ofs.sc8(d51). In this regime
we performed simulations at criticality and measured the
ponents defined in Eqs.~24!–~26!. To reduce finite size ef-
fects, we implemented periodic boundary conditions a
used a very large lattice. Rather than store the occupa
numbers of each lattice site, only the positions of the p
ticles were stored. This meant that the system size was
ited only by the number of integers, i.e., a system size
264'1.831019 on the 64-bit computer used. The simulatio
ran for times between 23104 and 23105 time steps per
particle, and were averaged over at least 23106 runs.

We encountered several obstacles in accurately deter
ing the values of these exponents. First, the quantities m

FIG. 3. The effective local exponents, as in Eqs.~24!–~26!, for
s51.6. The exponents are plotted against 1/t to extract thet→`
limit. The curves correspond to values ofp, from top to bottom,
0.985, 0.988, 0.99, and 0.992.
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sured were also expected to behave as power laws on
~critical! inactive side of the transition. The differences b
tween the equivalent exponents on the critical line and in
critical phase were sometimes small, particularly nears
5sc8(d51), where the fixed point we investigated merg
with the pure Le´vy annihilation fixed point. Consequentl
measurements close to this point required the longest r
Also, corrections to scaling meant that the effective lo
exponents did, in fact, vary witht. The impact of these cor
rections to scaling was sometimes difficult to interpret ac
rately. Finally, the various exponents measured yield
slightly different estimates forpc making it difficult to de-
termine the critical point more accurately than done he
This may be due to the corrections to scaling being of d
ferent sizes for each of the exponents measured.

The results of these simulations are shown in Table I. T
s5` values shown are for simulations with normal diffu
sion where the exponents measured are consistent with t
of other simulations@5,27#. Figure 4 shows the phase dia
gram as determined by the simulations.

We now discuss some features of the numerical data
Table I.

The data presented in Table I are consistent with a va
very close tos5sc8(d51)53/2 for the emergence of th
critical Lévy annihilation phase at nonzero branching. This
in good agreement with the one-loop result forym in Eq.
~22!, and provides some evidence that this one-loop re
may in fact be exact, as it was for the BARW model.

The measured exponents changed by rather sm
amounts over the range ofs studied. As discussed in Se
III, the exponents ats5sc8(d51), p51 can be calculated
for the pure Le´vy annihilation model and assumingsc8(d
51)53/2, are given byd52u51/3, z53/2. If the expo-
nents are to change monotonically ass is varied, then they
are trapped in a relatively small range of values between
BARW and Lévy annihilation exponents.

The numerical evidence is consistent with a smo
movement of the critical valuepc away from unity ass is
increased above 3/2, as shown in Fig. 4. Although a disc
tinuous jump inpc at arounds53/2 cannot be completely
ruled out, any such jump would have to be smaller th

TABLE I. The measured critical probabilities and exponents
various values ofs. The number in parentheses is an estimate of
error in the last figure.

s pc d u z

1.525 0.997~2! 0.32~1! 20.30~1! 1.53~2!

1.55 0.992~4! 0.32~2! 20.30~2! 1.53~2!

1.6 0.990~2! 0.33~2! 20.30~2! 1.56~2!

1.65 0.974~2! 0.32~2! 20.26~2! 1.55~2!

1.7 0.955~2! 0.32~2! 20.24~2! 1.59~2!

1.8 0.918~2! 0.32~2! 20.18~2! 1.59~2!

1.9 0.863~2! 0.32~2! 20.14~1! 1.63~2!

2.0 0.804~1! 0.305~5! 20.085~5! 1.68~2!

2.5 0.6185~2! 0.285~5! 20.005~5! 1.72~1!

` 0.5104~2! 0.287~3! 0.001~3! 1.74~1!
6-6
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about 1023. This finding has consequences for the analog
short-ranged BARW model. In that case the analog of
point ats5sc8(d51)'3/2 is the second critical dimensio
found atdc8'4/3. The uncontrolled truncated loop expansi
used to analyze this point in Ref.@6# predicted a discontinu
ous jump of the critical point as dimensiond is lowered
throughdc8 . Hence, the above numerical evidence indica
that a smooth movement of the critical point is a more like
scenario. Given the uncontrolled nature of the truncated l
expansion, any failure to accurately capture the beha
close todc8 would not, perhaps, be very surprising. Neverth
less, our results have provided numerical evidence for on
the main conclusions of Ref.@6#, namely the presence of
second critical dimensiondc8 .

Despite considerable effort, the data reported in Tab
are unfortunately not precise enough to answer the ques
at what value ofs do the Lévy results cross over to those o
the short-ranged BARW model? Regrettably, the situat
from a theoretical perspective is no clearer, due to the
sence of any controlled field theoretic methods in this
gime.

We now turn our attention to the second regime ford
51 BALF, that fors,sc8(d51)'3/2. In this case, it is no
appropriate to perform simulations at criticality, since in th
case we would only be measuring the exponents of the p
Lévy annihilation model. Hence we have performed o
critical simulations in an effort to measurebdensas a function
of s. In this case, we used a second initial condition, a fu
occupied lattice of sizeL5107. We then allowed the numbe
of particles to decay away until a steady state was reac
The steady-state density depends on the deviation from
critical point, as described by Eq.~5!, and thusbdensmay be
directly measured.

The values ofbdensmeasured in these steady-state sim
lations are given in Table II. Fors,1 the mean field resul
should hold sinced51 then lies above the upper critica
dimensiondc5s. Fors slightly bigger than unity, the uppe
critical dimension will lie just aboved51 and hence one
might hope to directly observe thee expansion results~see

FIG. 4. Phase diagram for the BALF model ind51. The inset
shows a blowup of the region nearsc8(d51).
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also Ref.@17# for a similar case!. Unfortunately, the values
measured in the simulations deviate by around 5–25 % fr
the mean field or one-loope expansion exponents calculate
in Sec. III. We believe there are two reasons for this discr
ancy. First, for smalls, finite size effects become importan
as the long-ranged hops allow a single particle to wrap all
way around the system in a short time. Second, ass
→sc8(d51)'3/2, bdens becomes rather large, and hen
large systems and long runs were necessary to probe the
small steady-state densities that occur nearpc . Although we
used as large a system as practicable, we were not ab
entirely eliminate the discrepancy between theory and sim
lations.

In summary, despite the difficulties encountered fors
,sc8(d51), the overall picture that emerges from the n
merics agrees well with the theory presented in the last s
tion. As we have discussed earlier, this, in turn, provid
additional support for the analysis of the short-rang
BARW model presented in Ref.@6#.

V. CONCLUSIONS

In this paper we have presented an analytic and nume
study of the BALF model. Using field theoretic technique
we have obtained a good analytic understanding of the mo
in the physical dimensiond51 for the regimes less than
about 3/2. For values ofs larger than this, we have had t
rely solely on numerical simulations. In both regimes t
critical exponents of the active/absorbing transition are fou
to vary continuously with the Le´vy index s. Numerically,
we find that the transition between the two regimes ind
51 occurs ats5sc8(d51)'3/2, in agreement with the on
loop result from the field theory. Unfortunately our numeri
for the smalls regime were not good enough to confirm th
accuracy of oure expansion calculations. Nevertheless, th
is the first time this universality class has been accessed s
its equivalent in the original BARW model lies in the ina
cessible dimensionsdc8,d,2.

Finally, we would like to emphasize that Le´vy flights are
a powerful way of probing the higher dimensional behav
of nonequilibrium models while performing simulations on
in d51. The disadvantage of this approach is that it nec
sitates the use of extremely large system sizes if finite s
effects are to be avoided. However, we have shown tha
large regions of parameter space these problems can be
come and reasonable estimates obtained for the expone

TABLE II. The exponentbdensdetermined in simulations of the
steady-state density of a system of size 107.

s bdens ~measured! bdens~theory!

0.7 1.0 1~mean field!
0.9 1.1 1~mean field!
1.1 1.3 5/4~one loop!
1.3 1.8 5/2~one loop!
6-7
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